Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Nucl Med ; 64(10): 1594-1602, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562802

RESUMO

Evaluation of metabolic tumor volume (MTV) changes using amino acid PET has become an important tool for response assessment in brain tumor patients. MTV is usually determined by manual or semiautomatic delineation, which is laborious and may be prone to intra- and interobserver variability. The goal of our study was to develop a method for automated MTV segmentation and to evaluate its performance for response assessment in patients with gliomas. Methods: In total, 699 amino acid PET scans using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) from 555 brain tumor patients at initial diagnosis or during follow-up were retrospectively evaluated (mainly glioma patients, 76%). 18F-FET PET MTVs were segmented semiautomatically by experienced readers. An artificial neural network (no new U-Net) was configured on 476 scans from 399 patients, and the network performance was evaluated on a test dataset including 223 scans from 156 patients. Surface and volumetric Dice similarity coefficients (DSCs) were used to evaluate segmentation quality. Finally, the network was applied to a recently published 18F-FET PET study on response assessment in glioblastoma patients treated with adjuvant temozolomide chemotherapy for a fully automated response assessment in comparison to an experienced physician. Results: In the test dataset, 92% of lesions with increased uptake (n = 189) and 85% of lesions with iso- or hypometabolic uptake (n = 33) were correctly identified (F1 score, 92%). Single lesions with a contiguous uptake had the highest DSC, followed by lesions with heterogeneous, noncontiguous uptake and multifocal lesions (surface DSC: 0.96, 0.93, and 0.81 respectively; volume DSC: 0.83, 0.77, and 0.67, respectively). Change in MTV, as detected by the automated segmentation, was a significant determinant of disease-free and overall survival, in agreement with the physician's assessment. Conclusion: Our deep learning-based 18F-FET PET segmentation allows reliable, robust, and fully automated evaluation of MTV in brain tumor patients and demonstrates clinical value for automated response assessment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Aminoácidos , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioma/patologia , Compostos Radiofarmacêuticos/uso terapêutico , Tirosina , Tomografia por Emissão de Pósitrons/métodos
3.
J Neurooncol ; 163(3): 597-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37382806

RESUMO

BACKGROUND: The expression level of the programmed cell death ligand 1 (PD-L1) appears to be a predictor for response to immunotherapy using checkpoint inhibitors in patients with non-small cell lung cancer (NSCLC). As differences in terms of PD-L1 expression levels in the extracranial primary tumor and the brain metastases may occur, a reliable method for the non-invasive assessment of the intracranial PD-L1 expression is, therefore of clinical value. Here, we evaluated the potential of radiomics for a non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to NSCLC. PATIENTS AND METHODS: Fifty-three NSCLC patients with brain metastases from two academic neuro-oncological centers (group 1, n = 36 patients; group 2, n = 17 patients) underwent tumor resection with a subsequent immunohistochemical evaluation of the PD-L1 expression. Brain metastases were manually segmented on preoperative T1-weighted contrast-enhanced MRI. Group 1 was used for model training and validation, group 2 for model testing. After image pre-processing and radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. The radiomics model was trained and validated using random stratified cross-validation. Finally, the best-performing radiomics model was applied to the test data. Diagnostic performance was evaluated using receiver operating characteristic (ROC) analyses. RESULTS: An intracranial PD-L1 expression (i.e., staining of at least 1% or more of tumor cells) was present in 18 of 36 patients (50%) in group 1, and 7 of 17 patients (41%) in group 2. Univariate analysis identified the contrast-enhancing tumor volume as a significant predictor for PD-L1 expression (area under the ROC curve (AUC), 0.77). A random forest classifier using a four-parameter radiomics signature, including tumor volume, yielded an AUC of 0.83 ± 0.18 in the training data (group 1), and an AUC of 0.84 in the external test data (group 2). CONCLUSION: The developed radiomics classifiers allows for a non-invasive assessment of the intracranial PD-L1 expression in patients with brain metastases secondary to NSCLC with high accuracy.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1 , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Curva ROC
4.
J Neurooncol ; 159(3): 519-529, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35852737

RESUMO

PURPOSE: To investigate the potential of radiomics applied to static clinical PET data using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) to differentiate treatment-related changes (TRC) from tumor progression (TP) in patients with gliomas. PATIENTS AND METHODS: One hundred fifty-one (151) patients with histologically confirmed gliomas and post-therapeutic progressive MRI findings according to the response assessment in neuro-oncology criteria underwent a dynamic amino acid PET scan using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET). Thereof, 124 patients were investigated on a stand-alone PET scanner (data used for model development and validation), and 27 patients on a hybrid PET/MRI scanner (data used for model testing). Mean and maximum tumor to brain ratios (TBRmean, TBRmax) were calculated using the PET data from 20 to 40 min after tracer injection. Logistic regression models were evaluated for the FET PET parameters TBRmean, TBRmax, and for radiomics features of the tumor areas as well as combinations thereof to differentiate between TP and TRC. The best performing models in the validation dataset were finally applied to the test dataset. The diagnostic performance was assessed by receiver operating characteristic analysis. RESULTS: Thirty-seven patients (25%) were diagnosed with TRC, and 114 (75%) with TP. The logistic regression model comprising the conventional FET PET parameters TBRmean and TBRmax resulted in an AUC of 0.78 in both the validation (sensitivity, 64%; specificity, 80%) and the test dataset (sensitivity, 64%; specificity, 80%). The model combining the conventional FET PET parameters and two radiomics features yielded the best diagnostic performance in the validation dataset (AUC, 0.92; sensitivity, 91%; specificity, 80%) and demonstrated its generalizability in the independent test dataset (AUC, 0.85; sensitivity, 81%; specificity, 70%). CONCLUSION: The developed radiomics classifier allows the differentiation between TRC and TP in pretreated gliomas based on routinely acquired static FET PET scans with a high diagnostic accuracy.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/patologia , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tirosina
5.
Brain Pathol ; 32(2): e13015, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35213083

RESUMO

Anatomical cross-sectional imaging methods such as contrast-enhanced MRI and CT are the standard for the delineation, treatment planning, and follow-up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non-invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion-weighted imaging, diffusion-weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular-genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Inteligência Artificial , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Neuroimagem , Tomografia por Emissão de Pósitrons
6.
Neuro Oncol ; 24(8): 1331-1340, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935978

RESUMO

BACKGROUND: The BRAF V600E mutation is present in approximately 50% of patients with melanoma brain metastases and an important prerequisite for response to targeted therapies, particularly BRAF inhibitors. As heterogeneity in terms of BRAF mutation status may occur in melanoma patients, a wild-type extracranial primary tumor does not necessarily rule out a targetable mutation in brain metastases using BRAF inhibitors. We evaluated the potential of MRI radiomics for a noninvasive prediction of the intracranial BRAF mutation status. METHODS: Fifty-nine patients with melanoma brain metastases from two university brain tumor centers (group 1, 45 patients; group 2, 14 patients) underwent tumor resection with subsequent genetic analysis of the intracranial BRAF mutation status. Preoperative contrast-enhanced MRI was manually segmented and analyzed. Group 1 was used for model training and validation, group 2 for model testing. After radiomics feature extraction, a test-retest analysis was performed to identify robust features prior to feature selection. Finally, the best performing radiomics model was applied to the test data. Diagnostic performances were evaluated using receiver operating characteristic (ROC) analyses. RESULTS: Twenty-two of 45 patients (49%) in group 1, and 8 of 14 patients (57%) in group 2 had an intracranial BRAF V600E mutation. A linear support vector machine classifier using a six-parameter radiomics signature yielded an area under the ROC curve of 0.92 (sensitivity, 83%; specificity, 88%) in the test data. CONCLUSIONS: The developed radiomics classifier allows a noninvasive prediction of the intracranial BRAF V600E mutation status in patients with melanoma brain metastases with high diagnostic performance.


Assuntos
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Humanos , Imageamento por Ressonância Magnética , Melanoma/genética , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos
7.
Radiother Oncol ; 166: 37-43, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801629

RESUMO

BACKGROUND: Brain metastases show different patterns of contrast enhancement, potentially reflecting hypoxic and necrotic tumor regions with reduced radiosensitivity. An objective evaluation of these patterns might allow a prediction of response to radiotherapy. We therefore investigated the potential of MRI radiomics in comparison with the visual assessment of semantic features to predict early response to stereotactic radiosurgery in patients with brain metastases. PATIENTS AND METHODS: In this retrospective study, 150 patients with 308 brain metastases from solid tumors (NSCLC in 53% of patients) treated by stereotactic radiosurgery (single dose of 17-20 Gy) were evaluated. The response of each metastasis (partial or complete remission vs. stabilization or progression) was assessed within 180 days after radiosurgery. Patterns of contrast enhancement in the pre-treatment T1-weighted MR images were either visually classified (homogenous, heterogeneous, necrotic ring-like) or subjected to a radiomics analysis. Random forest models were optimized by cross-validation and evaluated in a hold-out test data set (30% of metastases). RESULTS: In total, 221/308 metastases (72%) responded to radiosurgery. The optimal radiomics model comprised 10 features and outperformed the model solely based on semantic features in the test data set (AUC, 0.71 vs. 0.56; accuracy, 69% vs. 54%). The diagnostic performance could be further improved by combining semantic and radiomics features resulting in an AUC of 0.74 and an accuracy of 75% in the test data set. CONCLUSION: The developed radiomics model allowed prediction of early response to radiosurgery in patients with brain metastases and outperformed the visual assessment of patterns of contrast enhancement.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Humanos , Neoplasias Pulmonares/cirurgia , Imageamento por Ressonância Magnética/métodos , Radiocirurgia/métodos , Estudos Retrospectivos , Semântica
8.
Cancers (Basel) ; 13(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562803

RESUMO

Amino acid PET using the tracer O-(2-[18F]fluoroethyl)-L-tyrosine (FET) has attracted considerable interest in neurooncology. Furthermore, initial studies suggested the additional diagnostic value of FET PET radiomics in brain tumor patient management. However, the conclusiveness of radiomics models strongly depends on feature generalizability. We here evaluated the repeatability of feature-based FET PET radiomics. A test-retest analysis based on equivalent but statistically independent subsamples of FET PET images was performed in 50 newly diagnosed and histomolecularly characterized glioma patients. A total of 1,302 radiomics features were calculated from semi-automatically segmented tumor volumes-of-interest (VOIs). Furthermore, to investigate the influence of the spatial resolution of PET on repeatability, spherical VOIs of different sizes were positioned in the tumor and healthy brain tissue. Feature repeatability was assessed by calculating the intraclass correlation coefficient (ICC). To further investigate the influence of the isocitrate dehydrogenase (IDH) genotype on feature repeatability, a hierarchical cluster analysis was performed. For tumor VOIs, 73% of first-order features and 71% of features extracted from the gray level co-occurrence matrix showed high repeatability (ICC 95% confidence interval, 0.91-1.00). In the largest spherical tumor VOIs, 67% of features showed high repeatability, significantly decreasing towards smaller VOIs. The IDH genotype did not affect feature repeatability. Based on 297 repeatable features, two clusters were identified separating patients with IDH-wildtype glioma from those with an IDH mutation. Our results suggest that robust features can be obtained from routinely acquired FET PET scans, which are valuable for further standardization of radiomics analyses in neurooncology.

9.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353180

RESUMO

Currently, a reliable diagnostic test for differentiating pseudoprogression from early tumor progression is lacking. We explored the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) radiomics for this clinically important task. Thirty-four patients (isocitrate dehydrogenase (IDH)-wildtype glioblastoma, 94%) with progressive magnetic resonance imaging (MRI) changes according to the Response Assessment in Neuro-Oncology (RANO) criteria within the first 12 weeks after completing temozolomide chemoradiation underwent a dynamic FET PET scan. Static and dynamic FET PET parameters were calculated. For radiomics analysis, the number of datasets was increased to 102 using data augmentation. After randomly assigning patients to a training and test dataset, 944 features were calculated on unfiltered and filtered images. The number of features for model generation was limited to four to avoid data overfitting. Eighteen patients were diagnosed with early tumor progression, and 16 patients had pseudoprogression. The FET PET radiomics model correctly diagnosed pseudoprogression in all test cohort patients (sensitivity, 100%; negative predictive value, 100%). In contrast, the diagnostic performance of the best FET PET parameter (TBRmax) was lower (sensitivity, 81%; negative predictive value, 80%). The results suggest that FET PET radiomics helps diagnose patients with pseudoprogression with a high diagnostic performance. Given the clinical significance, further studies are warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...